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Black hole entropy in induced gravity: Reduction to 2D quantum field theory on the horizon
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It is argued that the degrees of freedom responsible for the Bekenstein-Hawking entropy of a black hole in
induced gravity are described by two-dimensional quantum field theory defined on the bifurcation surface of
the horizon. This result is proved for a class of induced gravity models with scalar, spinor, and vector heavy
constituents[S0556-282(98)02422-9

PACS numbe(s): 04.70.Dy, 04.50+h, 11.10.Gh

I. INTRODUCTION 2 j -
= 1.2
The statistical-mechanical origin of the Bekenstein- Q s & z<¢s ) 2
Hawking entropy[1,2] is one of the most intriguing prob-
lems of black hole physics. There exist several promisings the sum of contributions of the nonminimally coupled sca-
faz)prpa:?Z\(;iheevj I;c;]:[g]s) pcrglt:: ISIg]t.i(;[r:]z s;f['r?g ggterg:)yy%ﬁ:ggd;gbglj lar fields&ss. InAthis relationé are parameters of nonminimal
black holes[4,5], an explanation in the framework of loop C°UPIing and ¢s°) is the quantum average of the squares of
guantum gravity{6], a mechanism suggested in Sakharov'sthe _scalar operators on_the b|fgrcat|on surfaceln the_se_
induced gravity[7], and others. In the induced gravity ap- particular .models the origin o@ is related to the nonmini-
proach[8—10] the Bekenstein-Hawking entropy is related to mal coutf)lm_gs of the;calar flelds.hlt was showr] 16, t(;]a.t
the statistical-mechanical entropy of heavy constituent fieldQ can be interpreted as a Noether ¢ afge-14 an it
which induce the Einstein theory in the low-energy limit. determines the difference between the energy of the fields
Iffmd their canonical Hamiltonian.

Gravitons in the induced gravity are analogous to phono S . .
g y g P The subtraction in Eq.1.1) is unavoidable for the follow-

excitations in condensed matter systgrs]. . A )
A special class of induced gravity models was investi-""9 '€asons. The ngtf'b“t'o."."f eatfose and Fermicon-
gated in Refs[9,10]. These models contain heavy Spinorsstltuent field intoS>" is positive and divergent. Thus, the

SM e i : H
and scalar constituents propagating in an external gravitfgNtroPyS”™" is divergent, while black 2?/,'9 entrop§®" is
tional field. The dynamics of the gravitational field arises aginite- In formula(1.1) the divergence 08" is exactly com-

the result of quantum effects. The one-loop effective actiofPensated by the divergence of the quan@y
for quantum constituents gives the low-energy classical ac- 1here is a more profound reason why the Noether charge

tion for the Einstein gravity. The constructed models of in-Q aPpears in Eq(1.1). The Bekenstein-Hawking entropy
duced gravity are free from the leading ultraviolet diver-S  determines the degeneracy of states of a black hole. It
gences. The induced Newton constaBtis completely Was argued if10] that this degeneracy can be calculated by
determined by the parameters of the constituents, and it i§0Unting states of constituents with fixed tatakrgy On the
finite only if nonminimally coupled scalar fields are present.other hand, the entropg®" is directly related to the distri-

It was demonstrated that the Bekenstein-Hawking entroppution over the levels of thedamiltonian of constituent
SBH in the induced gravity can be written as ields. The additional tern@ is required to relate it to the

distribution over the energy levels.
In the present work we consider a wider class of induced
A gravity models which besides scalar and spinor constituents
SBH=E=SSM—Q. (1.1)  contains also massive vector fields. For briefness we call
such modelvector modelsWe demonstrate that the param-
eters of vector models can be chosen to exclude the leading
. . ultraviolet divergences even if all scalar fields are minimall
Here AA S the surface area of the horizon, argf" coupled. The regmarkable fact is that the relatitrd) is still y
=—Tr(pInp) is the statistical-mechanicébr entanglement  3|id. The Noether charg® in Eq. (1.1) is related now to the
entropy of the thermally excitegith thermal density matrix  “natural” coupling of vector fields with the curvature. The
p) constituent fields propagating near the horiz@6]. The  universality of the form of Eq(1.1) seems to be a quite
quantity general property of the induced gravity theories.
The important property of a vector model is that its only
free parameters are the masses of the fields, while the “non-
*Electronic address: frolov@phys.ualberta.ca minimal couplings” are fixed by the form of the action of the
Electronic address: fursaev@thsuni.jinr.ru vector fields. As we will see, this property makes possible a
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new, interesting interpretation of the Bekenstein-Hawking Ns Ng N,

entropy in induced gravity in terms of a two-dimensional F:Z Fs(ms,i)+z F(md,j)+2 L(m,,. (2.4
guantum theory oix. Thus, induced gravity models provide i=1 i=1 k=1

a simple realization of the holographic principle: the black ] ]

hole entropy is encoded in “surface” degrees of freedom i @ functional of the metrig,,, of the background space-
i.e., in the degrees of freedom of the theory which propagatéme- The scalar and spinor actions follow immediately from
very close to the black hole horizon. The holographic prin-Eds.(2.1) and(2.2):

ciple was formulated in15,16 (see also the recent paper in

[17]) and at the present moment it is actively discussed in the I(mg;)= 3logdet —V2+m3)), (2.9
framework of string theory18-21].
This paper is organized as follows. In Sec. Il we describe Iy(my;)=—logdet y*V ,+mgy ). (2.6

the models of induced gravity with vector fields. Section IlI

is devoted to the derivation of E@1.1) for these models. As a result of the equation of motion, a massive vector field
Special attention here is paid to the calculation of theV, obeys the conditioV*V , =0, which leaves only three
statistical-mechanical entropy of vector fields in the presencédependent components. Under quantization this condition
of the Killing horizon and to the properties of the Noether can be realized as a constraint so that the effective action for
charge which is connected with nonminimal vector cou-vector fields takes the form

plings. These results enable us to adopt a statistical-

mechanical explanation of the Bekenstein-Hawking entropy l"v(mvyk):fv(mvyk)—l"s(muyk), (2.7
given in Ref.[10] to a more general class of induced gravity
models. In Sec. IV we establish the relation between the T,(m, = tlogdet — V25*+R:+m?  8), (2.9)

Bekenstein-Hawking entropy and the effective action of a
2D free massive quantum field “living” on the bifurcation

surface?, of the horizons. As we show this relation is satis- . . . ’ .

. ; ) . . resents the effective action for a massive vector field which
fied for induced gravity obtained from a theory with partly we will denote asA The classical action foA. . which
broken supersymmetry. Concluding remarks and a brief disfesults in Eq(2.9 igf" Ko
cussion of the holographic property of the black hole entropy ale.

whereR/ is the Ricci tensor. The functioni]v(mv,k) rep-

in induced gravity theories are presented in Sec. V. The re- 1

lation between the energy, the Hamiltonian, and the Noethef [A ]=— = | dV[V*A'V A,,+ R, AA +m2 ALA,].
. X K . . . v 2 kY uky uv ™k Mk v, kM k Mk

charge for massive vector fields is derived in the Appendix.

We use the sign conventions of the book22] and, thus, (2.9

we work with the signature - + + +) for the Lorentzian

metric The fieldA{ obeys no constraints and carries an extra degree

of freedom. The contribution of this unphysical degree of
freedom in Eq.(2.8) is compensated for by subtracting the
Il. INDUCED GRAVITY MODELS actionT'g(m,,) of a scalar field with the mass, \; see Eq.
WITH VECTOR FIELDS 2.7).

In general, the effective actiof2.4) is an ultraviolet-
divergent quantity. Let us discuss now the constraints which
have to be imposed on the masses of the constituents to
eliminate the leading divergenceslih The divergences re-
lated to each particular field follow from the Schwinger-
DeWitt representation

The vector modélconsists ofNg minimally coupled sca-
lar fields ¢; with massesng;, Ny spinorsy; with masses
mgy ;, andN, vector fieldsV, with massesn, . The classi-
cal actions of the fields are standard,

1
o= 5[ Tl @)

— ﬁ °°d_S —m?s —SA;
= 2)s7s e Tre™ 5%, (2.10
'd[¢J]:f AV (y*V tmy )iy (22 \where n;=+1 for Bose fields and-1 for Fermi fields, and

S is an ultraviolet cutoff. The divergences come from the
lower integration limit where one can use the asymptotic

1 1
L[ Vi]= —J dv[z Fi Frut Emg,kV’kLVk# , (2.3  expansion of the trace of the heat kernel operatokaf

1
—sAj
where dV=/—gd*x is the volume element of 4D space- Tre >%i= (4ws)2f dV(ajotsa,+--). (21D
time M and Fy,,=V,V,,—V,V,,. The corresponding
quantum effective action of the model is For the fields under consideration we have

1
A,=—-VHV =1 ==R 2.1
XA similar model of induced gravity was discussed #8]. STV 0= aa 6 (212
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1
Ad:_(yﬂv,u)z* ag0=4, ad,1:_§R, (2.13
1
(AU)/';L:_VPVP(S};—’_RIK’ av,0:4'1 av,lz_gR.
(2.19

As in the case of the model considered in Ref, we require

a vanishing of the cosmological constant and a cancellatiopiere, according to Eqg2.18, we put N=N,=N4=N

PHYSICAL REVIEW D58 124009

G~ 12,09 (1)

N
1
- _127721 (m3InmZ;+2mj Inm3,;—3mZ ;Inm ).
(2.20

v -

of the divergences of the induced Newton constant. Thesgrom this expression it is easy to conclude that at least some

conditions can be written down with the help of the follow-
ing two functions:

NS Nd Nv
2 2 2
p(Z)=zl ms,zi_421 md,Zj+3k21 mu,zk'
i= i= =

NS Nd Nv
q(2)=2> mZ+2> m¥-3> m¥.
=1 7 =1 7 k=1
(2.15

As can be shown by using EgR.4), (2.10—(2.14), the in-
duced cosmological constant vanishes when

p(0)=p(1)=p(2)=p’(2)=0. (2.19
The induced Newton constaf® is finite if
q(0)=q(1)=0. (2.17
The constraints result in simple relations
Ng Ng Nu
Ns=Ng=N,, Z mg,i:E mg,j: > mlz),k'
=1 j=1 k=1
(2.18

of the constituents must be heavy and have mass comparable
with the Planck massip, . For simplicity in what follows we
assume that all the constituents are heavy.

Let us analyze models where conditig@s15 and(2.16)
are satisfied. Equation(2.18 are trivially satisfied when all
fields are in supersymmetric multiplets. However, in such
supersymmetric modelg(z) =q(z)=0 (because masses of
the fields in the same supermultiplet coingidmnd the in-
duced gravitational constant vanishes. A nontrivial induced
gravity theory can be obtained if the supersymmetry is partly
broken by splitting the masses of the fields in the supermul-
tiplets.

Let us demonstrate this by an example. Consider a model
with N massive supermultiplets. Each multiplet consists of
one scalar, one Dirac spinor, and one vector field, so that the
numbers of Bose and Fermi degrees of freedom cointide.
We suggest that masses of vector and spinor fields are equal,
m, i=mg;=m; (herei is the number of the multipletThe
masses of the scalar partners are assumed tmdye= (1
+Xx;)m;, wherex; is a dimensionless coefficient. The case
when|x;|<1 corresponds to slightly broken supersymmetry.
For this case,

N N

They show that one cannot construct a theory with finite p(2)=q(z)=§l M (1+x)%*~ 1]222241 XimgZ.

cosmological and Newton constants from vector and spinor

fields only.

The low-energy limit of the theory corresponds to the
regime when the curvature radilisof the spacetimeM is
much greater than the Planck lengtty. In this limit the
effective actionl’ of the theory can be expanded in the cur-
vature. The terms in this series are local and the leadin

terms can be calculated explicitly. In the linear in curvature

approximationl’ coincides with the Einstein actién

1
r[g]z—l%G( JM

Heredv is the volume element od M. The Newton con-
stant is determined by the following expression:

dVR+2J

dvK
IM

(2.19

2To induce the correct boundary term in E8.19 one has to add
toI' an integral of averages of field operators on the spatial bound
ary dM; se€[27]. These terms are not relevant for our analysis. Let
us emphasize that we are interested in the statistical-mechanic
computation of the black hole entropy for which only the region
near the horizon is important.

(2.2)

Now EQs.(2.16), (2.17), and(2.20 take the simple form

N N
9 Z:l xm?=0, 2,1 xmi=0, (2.22

1

N N
1
Z,l x;iminm?=0, G~ 521 xmAnm?2.  (2.23

This is a system of linear equations fer which for N=4
has nontrivial solutions.

The induced gravity constraints provide a cancellation of
the leading ultraviolet divergences. However, some logarith-
mical divergences are still present on general backgrounds.
On the Schwarzschild background the logarithmic diver-

al
3Supersymmetric models with free massive scalar, spinor, and

vector fields are discussed, for instance, in R28§].

124009-3
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gences are pure topological and can be neglected. That Ehis also means that to get Eq8.2) it is sufficient to re-
why in what follows we restrict the analysis to black holes of strict oneself to the Rindler approximation of the black hole
this type? metric:

_ 2 2442 2
IIl. STATISTICAL CALCULATION OF THE BLACK ds’=— k?p’dt*+dp?+dZ+dZ. (3.4

HOLE ENTROPY . . . . .
© © Here p>0, andt is the Rindler time coordinate. In this ap-

Let us now calculate the statistical-mechanical entropyproximation the densities of levels for high-spin fields can be
S°M in the vector models of induced gravity and compare itcomputed by using expressi@8.2) for scalars and spinors.
with the Bekenstein-Hawking entropy of a black hole. As a Let us consider a massive vector field in Minkowski
result of this comparison, we prove the validity of Ef.1) ~ spacetime. We denote b¥™ (m=0, ... ,4) theCartesian
for these models. coordinates in this space and Wy,=(Vy,V,), a=1,2,3, the

The canonical ensemble of constituent fields on a staticgomponents of the vector field with respect to the Cartesian
asymptotically flat background can be described by standarttame. Then the equations of motion which extremize vector
methods. The statistical-mechanical entropy of the fields ifield action(2.3) are simply a set of Klein-Gordon equations

determined from the free energy for four “scalars” V., plus the additional constrairn,,V"™
=0. The constraint serves to express the time compadvignt
F(B)=—pB UnTrexp —B:H:) in terms of other component¢,. The contribution of this
) component to the energy is negative arglcannot be con-
o] n . . -
_ a1 an - Bo sidered as an independent physical degree of freedom. The
B Jo doggind=ne"). G yensity of levels of the vector fieldn, /dw multiplied by

dw is the number of independent solutiong,(t,p,z)
Here B is the inverse temperature measured at infinity and=e~'“'V,,(p,2) of the field equations with frequencies in

‘A is the Hamiltonian of the system which is defined as thethe interval @,o+dw). The solutions are determined by
generator of canonical transformations along Killing time.three independent functiong, . Therefore, in the Rindler
The factory=1 for bosons andy= —1 for fermions,» are approximationdn, /dw is greater by a factor of 3 than the
the frequencies of single-particle excitations, alidw is ~ density of levels of a scalar field of the same mass~rom
the density of levelso. Egs.(3.2) we find

When the background space-time is the exterior region of
a black hole the gsingle-pfsf)rticle spectra have a nun?ber of dn,(m) _dns(m) 3b(m)
specific properties because of the presence of the Killing do  do 8wk
horizons[24]. In particular, the density of statek/dw in-
finitely grows near the horizon. Although this divergence hasThe curvature corrections may change this relation but they
an infrared origin, regularizations of the ultraviolet type canare not important for further analysis.
be applied to makdn/dw finite. For scalar and spinor fields The statistical-mechanical entropy
on general static backgrounds the divergencesdnfdw
were computed ifi25]. In the Pauli-Villars regularization the dF

(3.5

. : ? , . S=p2—, (3.6)
leading divergences for scalar and Dirac spinor fields of the ap
massm are
of scalar, spinor, and vector fields, follows from E¢3.1),
dngm) b(m) dng(m)  b(m) (3.2, and(3.5):
= 2 y = 2 .A, (32)
dw 87k dw 27k
Ss(m _)_b(ms,i)A
MZ S,i/ 487T ’
b(m)=cu?— mzlnﬁ. (3.3
S (m -)_ 2b(md,l)
A\ 487 7

Here k= (4M) ! is the surface gravity of the black holg,

is the Pauli-Villars cutoff, and=In222>0.

Modes propagating in the vicinity of the horizon give the s,(m, )= gb(mvvi)A_ (3.7)
main contribution to the densities of levels. That is why the vred
quantitydn/dw scales as the surface ardaof the horizon.

Expressions(3.7) are obtained from formuld3.6) at the
Hawking temperature, i.e., at8=2w/xk=8wM. The

4 R o _statistical-mechanical entropy of the constituents in the in-
At least some of the logarithmic divergences can be eliminated iNuced gravity model is

more complicated models, for instance, in models which contain

both vector and nonminimally coupled scalar fields. These models N
allow one to generalize the analysis of the black hole entropy prob- SSM— z [So(Mg;)+Sa(My ) +S,(m, )] (3.9
lem in induced gravity to charged black holes. i1 S ! o

124009-4
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By substituting Eqs(3.7) into Eq. (3.8) and taking into ac-

oL
count Eqgs(3.3), (2.18 we get AS= —877J t,n,tn,——do
3 M p&R/LV)\p
SM_l . 2 2 2 2 — t“t"—n*n")A A.d 3.1
S —EZ;[msvilnmsyi+2md'ilnmd,i = 2( n“n")A,A,do, (3.13
2 2 ~ ~

+3my;Inm; ;1A where we putl [A]=JL,dV. In the induced gravity such
N terms result in a correction to the entropy of a black hole. To

+ an CNMZ—mMZE mii A. (3.9 first order in the Planck constant this correction simply is
=1

N
Let us now calculate the Noether cha@dor our model. AS= sz(wt —nn )21 (AipAindo==Q.

It is instructive to discuss first the entropy of a black hole in (3.19
a classical theory. According to Wald and other authiags-
14], the black hole entropy can be interpreted as a Noetherere the averageA, ,A;,) is understood as a regularized
charge and obtained from the Lagrangiaaf the theory. For  quantity. The quantityQ has the meaning of Wald’s Noether
theories which do not include the derivatives of a metriccharge associated with nonminimal interaction terms of the
higher than second order the entropy can be written in thgector field. The sign minus on the right-hand sig&S) of
form Eq. (3.14) is chosen so thaD is positive.

By using the Pauli-Villars regularization one finds that, in

JL the Rindler approximation,
S= —87TJ2t#th)\npmd0', (31@
AA b(mv,i)
<Ai,uAiv>:77,U.V 16 2 (315)
whereR,,,,, is the Riemann tensor. The integration in Eq. ™

(3.1_0) goes over the bifurcation surfa?eof the horizon, and where 7, is the Minkowski metric and functiob(m, ;) is
do is the volume element & (fydo=.A). Vectorst, and defined by Eq(3.3. Equation(3.15 gives
n, are two mutually orthogonal vectors normal ¥osuch o '
thatt?=—1 andn?=1. 1 N
For the Einstein theory, Eq(3.10 reproduces the Q=—>, b(m)A

Bekenstein-Hawking formula for the black hole entropy. The 8=

important consequence of E€B.10 is that coupling of the 1 N N

matter fields with the curvature gives a nonzero contribution = | cNu?=In 2D m2 + D m2 InmZ, | A.

AS to the Bekenstein-Hawking entropy. In quantum theory 8 =1 " i=1

AS becomes an average of the corresponding field operator (3.16

onz.

Let us now consider the vector model of induced gravity. This result allows one to show that the total Bekenstein-
According to Eq.(2.4) the effective action of the theory can Hawking entropySEH in induced gravity is the difference of
be written as a path integral statistical-mechanical entrop$*M [see Eq.(3.9)] and the

Noether charg®). As can be easily seen, the divergences of

] ) S°M are exactly canceled by the divergences of the charge
expll"[g]=f [DPJexpil[g,P]), (3.1)  Q, so that one gets the finite expression

N
1
SSM_Q= @.21 [mZ;InmZ;+2m3 Inm;

N
l[g@]zgl (L 1+ L1+ TIAT+ L],

(3.12 _3m5,i|nm5,i]~A
~ A BH
where ®={¢; ,; ,A;,¢;}. The functionalslg, 14, andT, VTR (3.17

are defined by Eqg2.1), (2.2), and(2.9), respectively. The

origin of the scalar fieldsp; in Eq. (3.11) is related to the  Thjs expression coincides exactly with the Bekenstein-
quantization of the massive vector fields. It is assumed  Hawking entropy in induced gravity where the induced New-
that ¢; obey the “wrong” (Ferm) statistics in order to re- tgn constant is determined by formul2.20.

produce Eq(2.7). As follows from Eq.(2.9), the total “clas- As was argued in Ref10], the statistical-mechanical rea-
sical action” |[g,(1):| includes the nonminimal COUplingS of son Why the Noether Charge appears in 8:117) is related
the vector fieldsA; . By using formula(3.10 in the theory  to the fact that the canonical Hamiltonighand the energi
with the actionl ,[ A] one obtains the nonzero term of the system are differentl defines the free energis.l)
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and entropyS°™ while the energyE is connected with the Where—V§ is the Laplacian OIE_. The left and right p_arts_, of
spectrum of the mass of the black hole. In the Appendix weEd. (4.3) should be calculated in the same regularization. It
show that, for the vector model, should be emphasized that E¢.3) is an exact relation for
Rindler spacé.For the RHS of Eq(4.3) we find that
H-E (3.18

T 2m ! f INOs|2)do= — ——Indel — V2 +m?

T yp. 2<z| nOs|z)do= 2. e(—Vs+m)
This is the same relation which was found[it0] for the 1
induced gravity model with nonminimally coupled scalar =——W4m). (4.5
fields. Relation(3.18 can be used to provide the statistical- 2

mechanical interpretation of the subtraction of the ch&pge The functionalWg(m) has the meaning of the effective ac-

in the black hole entropy formul@.17). This interpretation .. : .

. . . tion of a 2D quantum fielgy given onX.. It can be expressed
repeats the one already given [ih0]: subtraction ofQ is in terms of t(r]]e Euclidear?(pgath integral as P
needed in order to pass from the distribution over the energy

in canonical ensemble of constituent fields to the distribution

1
over the black hole mass in the black hole canonical en- e‘Ws(m)=f D[X]exr{—ifg[(vzx)% mzxz]da},

semble which determinesEH,

IV. BLACK HOLE ENTROPY AND 2D QUANTUM
THEORY ON X

(4.6)

where D[ x] is a covariant measure. In Rgfl0] a two-
dimensional auxiliary fieldy “living” on the bifurcation

surface> was called dluctonfield to distinguish it from the

Our aim now is to relate the Bekenstein-Hawking entropy,p fie|ds in the black hole exterior. From Ed8.3) and(4.5)
S°M, Eq. (3.17, to a 2D quantum theory of free massive ;o optains

fields “living” on the bifurcation surfaces of the horizon.

To this aim it is instructive to represent express{8riL7) in . 1

another equivalent form. First, let us note that in the Rindler f do(?*(x(2)))=— 5. Ws(m). 4.7

approximation the regularized correlators of the scalar, *

spinor, and vector fields of the masehave the simple form it fo|lows from Egs.(4.2) and (4.7) that the contribution of

b(m) scalar fields to the black hole entrop§" can be interpreted

T ~o & s oy 2 in terms of a 2D quantum theory of fluctons &n
1672’ (W) =am(e%), (V. V¥)=3(¢%). We now find an analogous representation for the contri-
(4.1  bution toS®" from spinor and vector fields. The correlators

of these fields in the coinciding points are tensors in certain

In the Pauli-Villars regularization the functidmis defined representations of the Lorentz group. Different parts of these

by Eq.(3.3. From Eqgs.(3.17 and(4.1) we easily find that tensors have different two-dimensional interpretations. We

begin with the correlatof4.8) of vector fields restricted on

3

(VL X2V, (x(2'))=(A,(x(2)A,(X(2)))

+m2V ,V {o(x(2)) o (X(Z’
One can check that the divergences in correlators in4£8). WV o@D (),
are canceled because of induced gravity constrgiit) (4.9
=0; see Egs(2.19 and(2.17). Since the surfac& of bi-
furcation of horizons is a set of fixed points of the Killing

vector, only zero-frequendfsoft” ) modes contribute to the Cconsider the components of tensor quantties in the
correlators or®, (for a detailed discussion of this point, see Minkowski coordinatesx™. With respect to the coordinate
[10)). transformations o, components of a tensor with indices 0

As was shown iff10], the correlator of scalar fields taken and 3 behave as scalars while cqmponents with indices 1 and
on the bifurcation surface of the Killing horizons behaves? transform as vectors an. By using the arguments of Ref.
effectively as a two-dimensional operator. Namelyz #nd
z' are the coordinates of the pointsandx’ on 3, [see Eqg.

(3.4)], then %It can be generalized to curved backgrounds with a Killing hori-
zon. In the general case the opera@gy for very massive fields can
N N 1 be found by comparing Schwinger-DeWitt asymptotics of four- and
(p(X(2))p(x(2')))=— E(Z“n Oslz"), (4.3 two-dimensional operators; for details S6]. The key property
which allows a two-dimensional interpretation of the 4D correlators
5 5 on3, is that, is a geodesic surface. That is, any 4D geodesic which
Osy=—-Vs+m3, (4.4) begins and ends ob coincides with the 2D geodesic @Gh

(¢?)=

N

SBHI%E fda
i=1 J3

. 1 . .
2(p7)+ m_di<l//i‘/’i>_2<vi2> :
' (4.2

where ¢ is a scalar field of the same mass\?&;. Let us

124009-6
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N

[10] one can express the correla{dr,A,) with ,»=1,2 in o 1

terms of the 2D vector Laplacian di. Analogously, com- S :ng [ —Ws(msi) +Wy(mg ;)

ponents of the correlator witjy, »=0,3 can be represented o

in terms of the 2D scalar Laplacian. Thus, we find that +W,(m, ;) +2W(m, ;)]. (4.19

R . ) R This form of the entropy looks similar to the effective action
f da(AL(x(2))A1(X(2))+ A2(x(2))A,(X(2))) of a two-dimensional quantum field model on the surface
% To make this similarity more evident let us consider the con-
1. crete induced gravity model with partially broken supersym-
=—2—Wv(m), (4.9 metry which was discussed in Sec. Il. In this model the
™ masses of vector and spinor fields coincids, ;=mg
=m;. As a result,W,(m)=Wym)=—3W4(m) and Eq.

f Ed0<A°(X(Z))Ao(X(Z))+A3(X(Z))A3(X(Z))> (419 takes the form

N
1 1
8= — 152 [2Wy(mg) +Wy(my)]=— 5%,
1 12=1 ' 12
=—2_ 4.1
25— Wy(m). (4.10 (4.16
The quantityl'® is the effective action of a 2D model which

W, is the effective action of a scalar field ﬁ‘nandVvv(m) is  consists ofN spinor fields with masses) and 2N scalar

the effective action of a vector field & with the same mass fields with massesn;; . - _ .
m as that of 4D field: In fact, we have 2D induced gravity a@. The condition

that the 4D curvature be small compared to the masses of the
fields guarantees that the two-dimensional curvaturg s

. (4.1) small as well. So the 2D effective actidi®) can be com-
puted as an expansion in curvature. The leading term in this
expansion is the cosmological constant term

&

~ 1 , 1 5
Wv(m)zzlogde —-Vs+ §R2+m

Here A,B=1,2 andRy is the curvature of which can be
neglected in the Rindler approximation. It follows from Eqgs. 5 1 2
(4.8—(4.10 that I [y]= 26 d?x . (4.17
R ~ Here\ is the “induced” 2D cosmological constant which is
f da(VA(x(2))V . (x(2))) expressed in terms of the induced 4D Newton con@&a0)
* as\A=—3/G. The constraints which provide the ultraviolet

. R ~ . finiteness of the 4D Newton constdsee Eqs(2.17)] auto-
= Ld0<A”(X(Z))Aﬂ(X(Z))—sD(X(Z))QD(X(Z))) matically guarantee the finiteness of 2D cosmological con-
stant.
The 2D model described by functionBf?) can be ob-
=~ 5 [Wy(m)+2Ws(m)], (412  tained from the supersymmetric model with multiplets

consisting of a spinor and two scalar fields. The split of the
5 masses of spinor and scalar fields breaks the supersymmetry
W, (m)=W,(m)—Wy(m). (4.13 and yields a nonvanishing 2D cosmological constant.
Of course, the suggested connection between 4D and 2D
The functionaMW, (m) corresponds to the quantization of the theories is not unique, and one may expect that in general the
massive 2D vector field described by the classical actior¢0efficient on the RHS of Eq4.16 can be another rational
analogous to the 4D actiof2.3). number. Let us emphasize that the considered models of in-
Similar relations can be obtained for spinor fields. One 4pduced gravity are phenomenological and admit a large arbi-

easily finds that One may hope that if the induced gravity is obtained from an

underlying fundamental theory, the masses of the fields will
. m be fixed by some principle which will determine the coeffi-
f do(p(x(2)P(x(2))= —Wy(m),  (4.14  cientin Eq.(4.16.
2 ™ A remark is also in order about the two-dimensional in-
terpretation of the Noether char@e By taking into account
whereWy(m) is the effective action of 2D spinors @with ~ EQ.(3.16 it is easy to show that, in the Rindler approxima-

massm. tion,

By using Eqs(4.7), (4.12), and(4.14) in expressior(4.2)
for the Bekenstein-Hawking entropy in induced gravity we Q=—> W,(m,,) (4.18
find oo '
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This relation holds in any induced gravity model with vector authors(V.F.) is grateful to the Killam Trust for its financial
fields and does not require additional conditions on thesupport.
masses of the constituent fields. It enables one to ré€late

a quantum theory of 2D vector fields an APPENDIX: ENERGY, HAMILTONIAN, AND NOETHER

V. DISCUSSION CHARGE FOR VECTOR FIELDS

To summarize, we considered a class of induced gravit nge we consider the relation between the energy and the
models where the low-energy gravitational field is generatedfamiltonian for the vector model and prove H§.18. Let
by quantum one-loop effects in a system of heavy constitulls recall that the classical energyof a field ® in a 3D
ents. The vector models presented here consist of massivegion is defined by the stress-energy tensor
scalar, spinor, and vector constituent fields, and do not re-
quire nonminimal couplings of the scalar constituents. We 2 SI[D]
demonstrated that the general mechanism of the entropy gen- E= f T,,¢¢do”, T,,=——F7— , (A1)
eration in the induced gravity proposed in RE0] does 5 V-g a9+
work, and that the Bekenstein-Hawking entropy can be de-
rived by a statistical-mechanical counting of the energywhereds” is the future directed vector of the volume ele-
states of heavy constituents. ment onj3, {* is the timelike Killing vector, and[®] is the

It was further demonstrated that the expression for thelassical action ofP. The canonical energy is
Bekenstein-Hawking entropy in the induced gravity can be
identically rewritten in terms of fluctuations of the constitu- J' (o'?L(CD)

ent fields at the event horizon. The latter are determined only 5 WQ‘D_ (L(®) |da”, (A2)

by zero-frequency“soft” ) solutions of the corresponding

field equations. These “soft” modes are uniquely defined byW

their asymptotics at the bifurcation sphere of horiz&hs Lagrangian of the fieldi[®]= [dVL(®))

B e et i In e quanum thery e are deaing wih quanum ver
: . : , . . ages of the energy and the canonical energy. For the theory

with the effective action of two-dimensionélucton) fields under consideration, E¢3.11, one has

on 3. This mechanism is somewhat similar to the idea of the ' 7

holography[15—-21]. We hope to discuss this relation in N

more details somewhere else. T_ T .F .1F _§F

As a result of the two-dimensional reduction, the Zl (BsitBaitBoimEsi), "3
Bekenstein-Hawking entropy appears to be equél tal/12,
where \ is the 2D cosmological constant induced on the
surface of the horizon by 2D flucton fields. This implies that
the degrees of freedom responsible for the black hole entropy i
in the induced gravity can be related to surface degrees of
freedom of the black hole horizon. Such a conclusion is supn these relations the averageof C is
ported by the observation that since the masses of the con-
stituents are very higkof the order of the Planckian mass _ _ )
the fluctuations of the constituent fields near the horizon can C=e "9 | [DO]C[D,g]e"le?], (A5)
be directly connected with the fluctuations of the 2D geom-
etry of the horizon. This might bring a connection with the — — _
well-known results of statistical computations of black hole@"d Ei and H; are the energy and the canonical energy of
entropy of 3D black holef,5]. each of the fields WECh enter total acti®12. The quan-

It should be emphasized, once again, that the inducedties~v,i, F'v,i andEg;, Hg; correspond to the fielda/
gravity approach does not pretend to explain the black holand ¢;, respectively. These fields appear under quantization
entropy from first principles of the fundamental theory of of the vector constituents”. The minus sign byE.; and
guantum gravity(such as the string thegrput it allows one H., is the result of the “wrong"” statistics of the fields D

to demonstrate the universality of the entropy and its inde- it b iv sh that th dth ical
pendence of the concrete details of such a theory. It gives us can be easily shown that the energy and Ihe canonica
a hint that only a few quite general properties of the funda="eray coincide If the aCF'O'h doe; not contain the terms
mental theory(such as the low-energy gravity as inducedW|th curvature. The only fu_alds which ex_pI|C|tIy contain the
phenomenon, finiteness of the low-energy coupling confurvature term are vector field§*. For this reason one has
stants, holography, and so )omre really required for a
statistical-mechanical explanation of the black hole entropy.

5This result can be obtained directly if one starts with the expres-

ACKNOWLEDGMENTS sion for the energy and canonical energy for a vector fiéjd

This work was partially supported by the Natural SCienceSrewrlte them in the point-split form, and take into account that

and Engineering Research Council of Canada. One of the VLV, =(AL0AX ) +M 2V, V()X ).

here L, is the Lie derivative along* and L(®) is the

(Hgi+Hqi+H, i —HS). (A4)

s,i

M =

I

I
e

! !
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N When the regior3 is the region of the black hole exterior,
H- 22 (Hyi—E,0. (A6) the black hole horizon is one of its boundaries. Then the
=1 integral on the RHS of EqA8) is reduced to two terms: one

. . . ~ term comes from the spatial boundary®&nd the other one
Let us discuss first the difference between the en&ignd o the bifurcation surfac&. The terms on the spatial

the Hamiltonianﬁu of a classical vector field, described poundary can be eliminated by the proper choice of bound-
by actionl ,[A]; see Eq(2.9. E, andH, are obtained from ary conditions. However, the term ah cannot be elimi-

T,[A] by formulas(A1) and (A2). The difference between nated. By taking into account thgf,=0 and{,;,= «(t.n,
these quantities appears because of the variation over thet,Nn,) on X one obtains, from EqA8),

metric of the curvature coupling term in[A], and so one

- oL
has _E = v
) ) H,—E, 4Kf2t’unpt)\np aRMV)\de'. (A9)
_ i, i,
H,—E,=2] do,{,V, Vel on—+ 55 . (A7) Derivation of the analogous relation for general diffeomor-
B nopv vopu

phism invariant theories is given [129]. By summing over
In the Rindler approximation the integral can be transformedd!! the vector fieldsA; , which enter the model, using Eg.

to the total divergence (A6), and comparing this with Eq¢3.13 and (3.14 we see
that, for the vector induced gravity model,
ﬁv_EvzszdUVVP H_EILQ (Alo)
27 <’
oL, L, _ _
X (= LotV o) R + R . whereQ is the Noether charge. To obtain from E410) the
wapv vopp result in quantum theory one has to replace the quantities in

(A8) this formula by the corresponding quantum averages.

[1] S. W. Hawking, Commun. Math. Phy43, 199 (1975. [16] L. Susskind, J. Math. Phy86, 6377(1995.
[2] J. D. Bekenstein, Lett. Nuovo Cimenthy 737 (1972; Phys.  [17] G. 't Hooft, “Transplanckian Particles and the Quantization of

Rev. D7, 2333(1973. Time,” gr-qc/9805079. S. de Haro, Class. Quantum Gidy.
[3] A. W. Peet, “The Bekenstein Formula and String The@xy 519(1998.

Brane Theory,” hep-th/9712253. [18] J. Maldacena, “The Large N limit of Superconformal Field
[4] S. Carlip, Phys. Rev. 31, 632(1995. Theories and Supergravity,” hep-th/9711200.
[5] A. Strominger, J. High Energy Phy82, 009 (1998. [19] S. S. Gubster, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
[6] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys. Rev. B 428 105(1998.

Lett. 80, 904 (1998. [20] E. Witten, “Anti-De Sitter Space and Holography,”
[7] A. D. Sakharov, Sov. Phys. DoklL2, 1040 (1968; Theor. hep-th/9802150.

Math. Phys.23, 435(1976. [21] L. Susskind and E. Witten, “The Holographic Bound in
[8] T. Jacobson, “Black Hole Entropy and Induced Gravity,” Anti-de Sitter Space,” hep-th/9805114.

gr-qc/9404039. [22] C. W. Misner, K. S. Thorne, and J. A. Wheel@&ravitation
[9] V. P. Frolov, D. V. Fursaev, and A. |. Zelnikov, Nucl. Phys. (Freeman, San Francisco, 1973

B486, 339(1997). [23] A. Zelnikov, in Proceedings of the 7th Canadian Conference
[10] V. P. Frolov and D. V. Fursaev, Phys. Rev5B, 2212(1997). on General Relativity and Relativistic Astrophysics, Calgary,
[11] G. E. Volovik, “Induced Gravity in Superfluid*He," 1997.

cond-mat/9806010. [24] V. P. Frolov and D. V. Fursaev, Class. Quantum Grhy,
[12] R. M. Wald, Phys. Rev. Di8, R3427(1993. 2041(1999.
[13] V. lyer and R. M. Wald, Phys. Rev. B0, 846 (1994. [25] D. V. Fursaev, Nucl. Phys3524, 447 (1998.
[14] T. A. Jacobson, G. Kang, and R. C. Myers, Phys. Revd9®  [26] V. Frolov and I. Novikov, Phys. Rev. @8, 4545(1993.

6587 (1994). [27] A. D. Barvinsky and S. N. Solodukhin, Nucl. Phy&479, 305
[15] G. 't Hooft, in SalamfestschriftConference on Highlights of (1996.

Particle and Condensed Matter Physics, Trieste, Italy, 199328] J. T. Lopuszanski and M. Wolf, Nucl. PhyB184, 133(1981).
edited by A. Ali et al. (World Scientific, Singapore, 1993 [29] D. V. Fursaev, “Energy, Hamiltonian, Noether Charge and
p. 284, gr-qc/9310026. Black Holes,” hep-th/9809049.

124009-9



