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Black hole entropy in induced gravity: Reduction to 2D quantum field theory on the horizon
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It is argued that the degrees of freedom responsible for the Bekenstein-Hawking entropy of a black hole in
induced gravity are described by two-dimensional quantum field theory defined on the bifurcation surface of
the horizon. This result is proved for a class of induced gravity models with scalar, spinor, and vector heavy
constituents.@S0556-2821~98!02422-9#
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I. INTRODUCTION

The statistical-mechanical origin of the Bekenste
Hawking entropy@1,2# is one of the most intriguing prob
lems of black hole physics. There exist several promis
approaches to this problem: the string theory approach~see
for a review Ref.@3#!, calculations of the entropy of some 3
black holes@4,5#, an explanation in the framework of loo
quantum gravity@6#, a mechanism suggested in Sakharo
induced gravity@7#, and others. In the induced gravity a
proach@8–10# the Bekenstein-Hawking entropy is related
the statistical-mechanical entropy of heavy constituent fie
which induce the Einstein theory in the low-energy lim
Gravitons in the induced gravity are analogous to phon
excitations in condensed matter systems@11#.

A special class of induced gravity models was inves
gated in Refs.@9,10#. These models contain heavy spino
and scalar constituents propagating in an external grav
tional field. The dynamics of the gravitational field arises
the result of quantum effects. The one-loop effective act
for quantum constituents gives the low-energy classical
tion for the Einstein gravity. The constructed models of
duced gravity are free from the leading ultraviolet dive
gences. The induced Newton constantG is completely
determined by the parameters of the constituents, and
finite only if nonminimally coupled scalar fields are prese
It was demonstrated that the Bekenstein-Hawking entr
SBH in the induced gravity can be written as

SBH5
A

4G
5SSM2Q. ~1.1!

Here A is the surface area of the horizon, andSSM

52Tr( r̂ ln r̂) is the statistical-mechanical~or entanglement!
entropy of the thermally excited~with thermal density matrix
r̂) constituent fields propagating near the horizon@26#. The
quantity
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2& ~1.2!

is the sum of contributions of the nonminimally coupled sc
lar fieldsf̂s. In this relationjs are parameters of nonminima
coupling and̂ f̂s

2& is the quantum average of the squares
the scalar operators on the bifurcation surfaceS. In these
particular models the origin ofQ is related to the nonmini-
mal couplings of the scalar fields. It was shown in@10#, that
Q can be interpreted as a Noether charge@12–14# and it
determines the difference between the energy of the fie
and their canonical Hamiltonian.

The subtraction in Eq.~1.1! is unavoidable for the follow-
ing reasons. The contribution of each~Bose and Fermi! con-
stituent field intoSSM is positive and divergent. Thus, th
entropySSM is divergent, while black hole entropySBH is
finite. In formula~1.1! the divergence ofSSM is exactly com-
pensated by the divergence of the quantityQ.

There is a more profound reason why the Noether cha
Q appears in Eq.~1.1!. The Bekenstein-Hawking entrop
SBH determines the degeneracy of states of a black hole
was argued in@10# that this degeneracy can be calculated
counting states of constituents with fixed totalenergy. On the
other hand, the entropySSM is directly related to the distri-
bution over the levels of theHamiltonian of constituent
fields. The additional termQ is required to relate it to the
distribution over the energy levels.

In the present work we consider a wider class of induc
gravity models which besides scalar and spinor constitue
contains also massive vector fields. For briefness we
such modelsvector models. We demonstrate that the param
eters of vector models can be chosen to exclude the lea
ultraviolet divergences even if all scalar fields are minima
coupled. The remarkable fact is that the relation~1.1! is still
valid. The Noether chargeQ in Eq. ~1.1! is related now to the
‘‘natural’’ coupling of vector fields with the curvature. Th
universality of the form of Eq.~1.1! seems to be a quite
general property of the induced gravity theories.

The important property of a vector model is that its on
free parameters are the masses of the fields, while the ‘‘n
minimal couplings’’ are fixed by the form of the action of th
vector fields. As we will see, this property makes possibl
©1998 The American Physical Society09-1
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VALERI FROLOV AND DMITRI FURSAEV PHYSICAL REVIEW D 58 124009
new, interesting interpretation of the Bekenstein-Hawk
entropy in induced gravity in terms of a two-dimension
quantum theory onS. Thus, induced gravity models provid
a simple realization of the holographic principle: the bla
hole entropy is encoded in ‘‘surface’’ degrees of freedo
i.e., in the degrees of freedom of the theory which propag
very close to the black hole horizon. The holographic pr
ciple was formulated in@15,16# ~see also the recent paper
@17#! and at the present moment it is actively discussed in
framework of string theory@18–21#.

This paper is organized as follows. In Sec. II we descr
the models of induced gravity with vector fields. Section
is devoted to the derivation of Eq.~1.1! for these models.
Special attention here is paid to the calculation of
statistical-mechanical entropy of vector fields in the prese
of the Killing horizon and to the properties of the Noeth
charge which is connected with nonminimal vector co
plings. These results enable us to adopt a statisti
mechanical explanation of the Bekenstein-Hawking entro
given in Ref.@10# to a more general class of induced grav
models. In Sec. IV we establish the relation between
Bekenstein-Hawking entropy and the effective action o
2D free massive quantum field ‘‘living’’ on the bifurcatio
surfaceS of the horizons. As we show this relation is sat
fied for induced gravity obtained from a theory with part
broken supersymmetry. Concluding remarks and a brief
cussion of the holographic property of the black hole entro
in induced gravity theories are presented in Sec. V. The
lation between the energy, the Hamiltonian, and the Noe
charge for massive vector fields is derived in the Append

We use the sign conventions of the book in@22# and, thus,
we work with the signature (2111) for the Lorentzian
metric.

II. INDUCED GRAVITY MODELS
WITH VECTOR FIELDS

The vector model1 consists ofNs minimally coupled sca-
lar fields f i with massesms,i , Nd spinorsc j with masses
md, j , andNv vector fieldsVk with massesmv,k . The classi-
cal actions of the fields are standard,

I s@f i #52
1

2E dV@~¹f i !
21ms,i

2 f i
2#, ~2.1!

I d@c j #5E dVc̄ j~gm¹m1md, j !c j , ~2.2!

I v@Vk#52E dVF1

4
Fk

mnFkmn1
1

2
mv,k

2 Vk
mVkmG , ~2.3!

where dV5A2gd4x is the volume element of 4D space
time M and Fkmn5¹mVkn2¹nVkm . The corresponding
quantum effective action of the model is

1A similar model of induced gravity was discussed in@23#.
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G5(
i 51

Ns

Gs~ms,i !1(
j 51

Nd

G~md, j !1 (
k51

Nv

G~mv,k!. ~2.4!

G is a functional of the metricgmn of the background space
time. The scalar and spinor actions follow immediately fro
Eqs.~2.1! and ~2.2!:

Gs~ms,i !5 1
2 log det~2¹21ms,i

2 !, ~2.5!

Gd~md, j !52 log det~gm¹m1md, j !. ~2.6!

As a result of the equation of motion, a massive vector fi
Vm obeys the condition¹mVm50, which leaves only three
independent components. Under quantization this condi
can be realized as a constraint so that the effective action
vector fields takes the form

Gv~mv,k!5G̃v~mv,k!2Gs~mv,k!, ~2.7!

G̃v~mv,k!5 1
2 log det~2¹2dn

m1Rn
m1mv,k

2 dn
m!, ~2.8!

whereRn
m is the Ricci tensor. The functionalG̃v(mv,k) rep-

resents the effective action for a massive vector field wh
we will denote asAk,m . The classical action forAk,m which
results in Eq.~2.8! is

Ĩ v@Ak#52
1

2E dV@¹mAk
n¹mAkn1RmnAk

mAk
n1mv,k

2 Ak
mAkm#.

~2.9!

The fieldAk
m obeys no constraints and carries an extra deg

of freedom. The contribution of this unphysical degree
freedom in Eq.~2.8! is compensated for by subtracting th
actionGs(mv,k) of a scalar field with the massmv,k ; see Eq.
~2.7!.

In general, the effective action~2.4! is an ultraviolet-
divergent quantity. Let us discuss now the constraints wh
have to be imposed on the masses of the constituent
eliminate the leading divergences inG. The divergences re
lated to each particular field follow from the Schwinge
DeWitt representation

G i52
h i

2 Ed

`ds

s
e2mi

2sTr e2sD i, ~2.10!

whereh i511 for Bose fields and21 for Fermi fields, and
d is an ultraviolet cutoff. The divergences come from t
lower integration limit where one can use the asympto
expansion of the trace of the heat kernel operator ofD i :

Tr e2sD i.
1

~4ps!2E dV~ai ,01sai ,11¯ !. ~2.11!

For the fields under consideration we have

Ds52¹m¹m , as,051, as,15
1

6
R, ~2.12!
9-2
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Dd52~gm¹m!2, ad,054, ad,152
1

3
R, ~2.13!

~Dv!n
m52¹r¹rdn

m1Rn
m , av,054, av,152

1

3
R.

~2.14!

As in the case of the model considered in Ref.@9#, we require
a vanishing of the cosmological constant and a cancella
of the divergences of the induced Newton constant. Th
conditions can be written down with the help of the follow
ing two functions:

p~z!5(
i 51

Ns

ms,i
2z24(

j 51

Nd

md, j
2z 13(

k51

Nv

mv,k
2z ,

q~z!5(
i 51

Ns

ms,i
2z12(

j 51

Nd

md, j
2z 23(

k51

Nv

mv,k
2z .

~2.15!

As can be shown by using Eqs.~2.4!, ~2.10!–~2.14!, the in-
duced cosmological constant vanishes when

p~0!5p~1!5p~2!5p8~2!50. ~2.16!

The induced Newton constantG is finite if

q~0!5q~1!50. ~2.17!

The constraints result in simple relations

Ns5Nd5Nv , (
i 51

Ns

ms,i
2 5(

j 51

Nd

md, j
2 5 (

k51

Nv

mv,k
2 .

~2.18!

They show that one cannot construct a theory with fin
cosmological and Newton constants from vector and sp
fields only.

The low-energy limit of the theory corresponds to t
regime when the curvature radiusL of the spacetimeM is
much greater than the Planck lengthmPl

21 . In this limit the
effective actionG of the theory can be expanded in the cu
vature. The terms in this series are local and the lead
terms can be calculated explicitly. In the linear in curvatu
approximationG coincides with the Einstein action2

G@g#.
1

16pGS E
M

dVR12E
]M

dvK D . ~2.19!

Here dv is the volume element of]M. The Newton con-
stant is determined by the following expression:

2To induce the correct boundary term in Eq.~2.19! one has to add
to G an integral of averages of field operators on the spatial bou
ary ]M; see@27#. These terms are not relevant for our analysis.
us emphasize that we are interested in the statistical-mecha
computation of the black hole entropy for which only the regi
near the horizon is important.
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12p
q8~1!

5
1

12p(
i 51

N

~ms,i
2 ln ms,i

2 12md,i
2 ln md,i

2 23mv,i
2 ln mv,i

2 !.

~2.20!

Here, according to Eqs.~2.18!, we put N5Ns5Nd5Nv .
From this expression it is easy to conclude that at least s
of the constituents must be heavy and have mass compa
with the Planck massmPl . For simplicity in what follows we
assume that all the constituents are heavy.

Let us analyze models where conditions~2.15! and~2.16!
are satisfied. Equations~2.18! are trivially satisfied when all
fields are in supersymmetric multiplets. However, in su
supersymmetric modelsp(z)5q(z)[0 ~because masses o
the fields in the same supermultiplet coincide! and the in-
duced gravitational constant vanishes. A nontrivial induc
gravity theory can be obtained if the supersymmetry is pa
broken by splitting the masses of the fields in the superm
tiplets.

Let us demonstrate this by an example. Consider a mo
with N massive supermultiplets. Each multiplet consists
one scalar, one Dirac spinor, and one vector field, so that
numbers of Bose and Fermi degrees of freedom coinci3

We suggest that masses of vector and spinor fields are e
mv,i5md,i[mi ~here i is the number of the multiplet!. The
masses of the scalar partners are assumed to bems,i5(1
1xi)mi , wherexi is a dimensionless coefficient. The ca
whenuxi u!1 corresponds to slightly broken supersymmet
For this case,

p~z!5q~z!5(
i 51

N

mi
2z@~11xi !

2z21#.2z(
i 51

N

ximi
2z .

~2.21!

Now Eqs.~2.16!, ~2.17!, and~2.20! take the simple form

(
i 51

N

ximi
250, (

i 51

N

ximi
450, ~2.22!

(
i 51

N

ximi
4ln mi

250,
1

G
.

1

6p(
i 51

N

ximi
2ln mi

2. ~2.23!

This is a system of linear equations forxi which for N>4
has nontrivial solutions.

The induced gravity constraints provide a cancellation
the leading ultraviolet divergences. However, some logar
mical divergences are still present on general backgrou
On the Schwarzschild background the logarithmic div

d-
t
cal

3Supersymmetric models with free massive scalar, spinor,
vector fields are discussed, for instance, in Ref.@28#.
9-3
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VALERI FROLOV AND DMITRI FURSAEV PHYSICAL REVIEW D 58 124009
gences are pure topological and can be neglected. Th
why in what follows we restrict the analysis to black holes
this type.4

III. STATISTICAL CALCULATION OF THE BLACK
HOLE ENTROPY

Let us now calculate the statistical-mechanical entro
SSM in the vector models of induced gravity and compare
with the Bekenstein-Hawking entropy of a black hole. As
result of this comparison, we prove the validity of Eq.~1.1!
for these models.

The canonical ensemble of constituent fields on a sta
asymptotically flat background can be described by stand
methods. The statistical-mechanical entropy of the field
determined from the free energy

F~b!52b21ln Tr exp~2b:Ĥ: !

5hb21E
0

`

dv
dn

dv
ln~12he2bv!. ~3.1!

Here b is the inverse temperature measured at infinity a
:Ĥ: is the Hamiltonian of the system which is defined as
generator of canonical transformations along Killing tim
The factorh51 for bosons andh521 for fermions,v are
the frequencies of single-particle excitations, anddn/dv is
the density of levelsv.

When the background space-time is the exterior region
a black hole the single-particle spectra have a numbe
specific properties because of the presence of the Kil
horizons@24#. In particular, the density of statesdn/dv in-
finitely grows near the horizon. Although this divergence h
an infrared origin, regularizations of the ultraviolet type c
be applied to makedn/dv finite. For scalar and spinor field
on general static backgrounds the divergences ofdn/dv
were computed in@25#. In the Pauli-Villars regularization the
leading divergences for scalar and Dirac spinor fields of
massm are

dns~m!

dv
5

b~m!

8p2k
A,

dnd~m!

dv
5

b~m!

2p2k
A, ~3.2!

b~m!5cm22m2ln
m2

m2 . ~3.3!

Herek5(4M )21 is the surface gravity of the black hole,m

is the Pauli-Villars cutoff, andc5 ln729
256.0.

Modes propagating in the vicinity of the horizon give th
main contribution to the densities of levels. That is why t
quantitydn/dv scales as the surface areaA of the horizon.

4At least some of the logarithmic divergences can be eliminate
more complicated models, for instance, in models which con
both vector and nonminimally coupled scalar fields. These mo
allow one to generalize the analysis of the black hole entropy p
lem in induced gravity to charged black holes.
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This also means that to get Eqs.~3.2! it is sufficient to re-
strict oneself to the Rindler approximation of the black ho
metric:

ds252k2r2dt21dr21dz1
21dz2

2. ~3.4!

Here r.0, andt is the Rindler time coordinate. In this ap
proximation the densities of levels for high-spin fields can
computed by using expression~3.2! for scalars and spinors

Let us consider a massive vector field in Minkows
spacetime. We denote byXm (m50, . . . ,4) theCartesian
coordinates in this space and byVm5(V0 ,Va), a51,2,3, the
components of the vector field with respect to the Cartes
frame. Then the equations of motion which extremize vec
field action~2.3! are simply a set of Klein-Gordon equation
for four ‘‘scalars’’ Vm plus the additional constraint]mVm

50. The constraint serves to express the time componenV0
in terms of other componentsVa . The contribution of this
component to the energy is negative andV0 cannot be con-
sidered as an independent physical degree of freedom.
density of levels of the vector fielddnv /dv multiplied by
dv is the number of independent solutionsVm(t,r,z)
5e2 ivtVm(r,z) of the field equations with frequencies i
the interval (v,v1dv). The solutions are determined b
three independent functionsVa . Therefore, in the Rindler
approximationdnv /dv is greater by a factor of 3 than th
density of levels of a scalar field of the same massm. From
Eqs.~3.2! we find

dnv~m!

dv
53

dns~m!

dv
5

3b~m!

8p2k
A. ~3.5!

The curvature corrections may change this relation but t
are not important for further analysis.

The statistical-mechanical entropy

S5b2
]F

]b
, ~3.6!

of scalar, spinor, and vector fields, follows from Eqs.~3.1!,
~3.2!, and~3.5!:

Ss~ms,i !5
b~ms,i !

48p
A,

Sd~md,i !5
2b~md,i !

48p
A,

Sv~mv,i !5
3b~mv,i !

48p
A. ~3.7!

Expressions~3.7! are obtained from formula~3.6! at the
Hawking temperature, i.e., atb52p/k58pM . The
statistical-mechanical entropy of the constituents in the
duced gravity model is

SSM5(
i 51

N

@Ss~ms,i !1Sd~md,i !1Sv~mv,i !#. ~3.8!

in
in
ls
b-
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By substituting Eqs.~3.7! into Eq. ~3.8! and taking into ac-
count Eqs.~3.3!, ~2.18! we get

SSM5
1

48p(
i 51

N

@ms,i
2 ln ms,i

2 12md,i
2 ln md,i

2

13mv,i
2 ln mv,i

2 #A

1
1

8pFcNm22 ln m2(
i 51

N

mv,i
2 GA. ~3.9!

Let us now calculate the Noether chargeQ for our model.
It is instructive to discuss first the entropy of a black hole
a classical theory. According to Wald and other authors@12–
14#, the black hole entropy can be interpreted as a Noe
charge and obtained from the LagrangianL of the theory. For
theories which do not include the derivatives of a met
higher than second order the entropy can be written in
form

S528pE
S
tmnntlnr

]L

]Rmnlr
ds, ~3.10!

whereRmnlr is the Riemann tensor. The integration in E
~3.10! goes over the bifurcation surfaceS of the horizon, and
ds is the volume element ofS (*Sds5A). Vectorstm and
nm are two mutually orthogonal vectors normal toS such
that t2521 andn251.

For the Einstein theory, Eq.~3.10! reproduces the
Bekenstein-Hawking formula for the black hole entropy. T
important consequence of Eq.~3.10! is that coupling of the
matter fields with the curvature gives a nonzero contribut
DS to the Bekenstein-Hawking entropy. In quantum theo
DS becomes an average of the corresponding field oper
on S.

Let us now consider the vector model of induced grav
According to Eq.~2.4! the effective action of the theory ca
be written as a path integral

expiG@g#5E @DF#exp~ i I @g,F#!, ~3.11!

I @g,F#[(
i 51

N

~ I s@f i #1I d@c i #1 Ĩ v@Ai #1I s@w i # !,

~3.12!

where F5$f i ,c i ,Ai ,w i%. The functionalsI s , I d , and Ĩ v
are defined by Eqs.~2.1!, ~2.2!, and~2.9!, respectively. The
origin of the scalar fieldsw i in Eq. ~3.11! is related to the
quantization of the massive vector fieldsAi . It is assumed
that w i obey the ‘‘wrong’’ ~Fermi! statistics in order to re-
produce Eq.~2.7!. As follows from Eq.~2.9!, the total ‘‘clas-
sical action’’ I @g,F# includes the nonminimal couplings o
the vector fieldsAi . By using formula~3.10! in the theory
with the actionĨ v@A# one obtains the nonzero term
12400
er

e

.

n
y
tor

.

DS528pE
S
tmnntlnr

]L̃v

]Rmnlr
ds

5pE
S
~ tmtn2nmnn!AmAnds, ~3.13!

where we putĨ v@A#5* L̃vdV. In the induced gravity such
terms result in a correction to the entropy of a black hole.
first order in the Planck constant this correction simply is

DS5pE
S
~ tmtn2nmnn!(

i 51

N

^ÂimÂin&ds[2Q.

~3.14!

Here the averagêÂimÂin& is understood as a regularize
quantity. The quantityQ has the meaning of Wald’s Noethe
charge associated with nonminimal interaction terms of
vector field. The sign minus on the right-hand side~RHS! of
Eq. ~3.14! is chosen so thatQ is positive.

By using the Pauli-Villars regularization one finds that,
the Rindler approximation,

^ÂimÂin&5hmn

b~mv,i !

16p2
, ~3.15!

wherehmn is the Minkowski metric and functionb(mv,i) is
defined by Eq.~3.3!. Equation~3.15! gives

Q5
1

8p(
i 51

N

b~mi !A

5
1

8pS cNm22 ln m2(
i 51

N

mv,i
2 1(

i 51

N

mv,i
2 ln mv,i

2 DA.

~3.16!

This result allows one to show that the total Bekenste
Hawking entropySBH in induced gravity is the difference o
statistical-mechanical entropySSM @see Eq.~3.9!# and the
Noether chargeQ. As can be easily seen, the divergences
SSM are exactly canceled by the divergences of the cha
Q, so that one gets the finite expression

SSM2Q5
1

48p(
i 51

N

@ms,i
2 ln ms,i

2 12md,i
2 ln md,i

2

23mv,i
2 ln mv,i

2 #A

5
A

4G
5SBH. ~3.17!

This expression coincides exactly with the Bekenste
Hawking entropy in induced gravity where the induced Ne
ton constant is determined by formula~2.20!.

As was argued in Ref.@10#, the statistical-mechanical rea
son why the Noether charge appears in Eq.~3.17! is related
to the fact that the canonical HamiltonianH and the energyE
of the system are different.H defines the free energy~3.1!
9-5
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VALERI FROLOV AND DMITRI FURSAEV PHYSICAL REVIEW D 58 124009
and entropySSM while the energyE is connected with the
spectrum of the mass of the black hole. In the Appendix
show that, for the vector model,

H2E5
k

2p
Q. ~3.18!

This is the same relation which was found in@10# for the
induced gravity model with nonminimally coupled scal
fields. Relation~3.18! can be used to provide the statistica
mechanical interpretation of the subtraction of the chargQ
in the black hole entropy formula~3.17!. This interpretation
repeats the one already given in@10#: subtraction ofQ is
needed in order to pass from the distribution over the ene
in canonical ensemble of constituent fields to the distribut
over the black hole mass in the black hole canonical
semble which determinesSBH.

IV. BLACK HOLE ENTROPY AND 2D QUANTUM
THEORY ON S

Our aim now is to relate the Bekenstein-Hawking entro
SBH, Eq. ~3.17!, to a 2D quantum theory of free massiv
fields ‘‘living’’ on the bifurcation surfaceS of the horizon.
To this aim it is instructive to represent expression~3.17! in
another equivalent form. First, let us note that in the Rind
approximation the regularized correlators of the sca
spinor, and vector fields of the massm have the simple form

^f̂2&5
b~m!

16p2 , ^ĉ̄ĉ&54m^f̂2&, ^V̂mV̂m&53^f̂2&.

~4.1!

In the Pauli-Villars regularization the functionb is defined
by Eq. ~3.3!. From Eqs.~3.17! and ~4.1! we easily find that

SBH5
p

6(
i 51

N E
S
dsF2^f̂ i

2&1
1

md,i
^ĉ̄ i ĉ i&22^V̂i

2&G .
~4.2!

One can check that the divergences in correlators in Eq.~4.2!
are canceled because of induced gravity constraintq(1)
50; see Eqs.~2.15! and ~2.17!. Since the surfaceS of bi-
furcation of horizons is a set of fixed points of the Killin
vector, only zero-frequency~‘‘soft’’ ! modes contribute to the
correlators onS ~for a detailed discussion of this point, se
@10#!.

As was shown in@10#, the correlator of scalar fields take
on the bifurcation surface of the Killing horizons behav
effectively as a two-dimensional operator. Namely, ifz and
z8 are the coordinates of the pointsx andx8 on S @see Eq.
~3.4!#, then

^f̂„x~z!…f̂„x~z8!…&52
1

4p
^zu ln OSuz8&, ~4.3!

OS52¹S
2 1m2, ~4.4!
12400
e

y
n
-

y

r
r,

where2¹S
2 is the Laplacian onS. The left and right parts of

Eq. ~4.3! should be calculated in the same regularization
should be emphasized that Eq.~4.3! is an exact relation for
Rindler space.5 For the RHS of Eq.~4.3! we find that

2
1

4pES
^zu ln OSuz&ds52

1

4p
ln det~2¹S

2 1m2!

[2
1

2p
Ws~m!. ~4.5!

The functionalWs(m) has the meaning of the effective a
tion of a 2D quantum fieldx given onS. It can be expressed
in terms of the Euclidean path integral as

e2Ws~m!5E D@x#expF2
1

2ES
@~¹Sx!21m2x2#dsG ,

~4.6!

where D@x# is a covariant measure. In Ref.@10# a two-
dimensional auxiliary fieldx ‘‘living’’ on the bifurcation
surfaceS was called afluctonfield to distinguish it from the
4D fields in the black hole exterior. From Eqs.~4.3! and~4.5!
one obtains

E
S
ds^f̂2

„x~z!…&52
1

2p
Ws~m!. ~4.7!

It follows from Eqs.~4.2! and ~4.7! that the contribution of
scalar fields to the black hole entropySBH can be interpreted
in terms of a 2D quantum theory of fluctons onS.

We now find an analogous representation for the con
bution toSBH from spinor and vector fields. The correlato
of these fields in the coinciding points are tensors in cert
representations of the Lorentz group. Different parts of th
tensors have different two-dimensional interpretations.
begin with the correlator~4.8! of vector fields restricted on
S:

^V̂m„x~z!…V̂n„x~z8!…&5^Âm„x~z!…Ân„x~z8!…&

1m22¹m¹n8^ŵ„x~z!…ŵ„x~z8!…&,

~4.8!

where ŵ is a scalar field of the same mass asV̂m . Let us
consider the components of tensor quantities in
Minkowski coordinatesXm. With respect to the coordinat
transformations onS, components of a tensor with indices
and 3 behave as scalars while components with indices 1
2 transform as vectors onS. By using the arguments of Re

5It can be generalized to curved backgrounds with a Killing ho
zon. In the general case the operatorOS for very massive fields can
be found by comparing Schwinger-DeWitt asymptotics of four- a
two-dimensional operators; for details see@10#. The key property
which allows a two-dimensional interpretation of the 4D correlat
on S is thatS is a geodesic surface. That is, any 4D geodesic wh
begins and ends onS coincides with the 2D geodesic onS.
9-6
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@10# one can express the correlator^ÂmÂn& with m,n51,2 in
terms of the 2D vector Laplacian onS. Analogously, com-
ponents of the correlator withm,n50,3 can be represente
in terms of the 2D scalar Laplacian. Thus, we find that

E
S
ds^Â1

„x~z!…Â1„x~z!…1Â2
„x~z!…Â2„x~z!…&

52
1

2p
W̃v~m!, ~4.9!

E
S
ds^Â0

„x~z!…Â0„x~z!…1Â3
„x~z!…Â3„x~z!…&

522
1

2p
Ws~m!. ~4.10!

Ws is the effective action of a scalar field onS andW̃v(m) is
the effective action of a vector field onS with the same mass
m as that of 4D field:

W̃v~m!5
1

2
log detF S 2¹S

2 1
1

2
RS1m2D dB

AG . ~4.11!

Here A,B51,2 andRS is the curvature ofS which can be
neglected in the Rindler approximation. It follows from Eq
~4.8!–~4.10! that

E
S
ds^V̂m

„x~z!…V̂m„x~z!…&

5E
S
ds^Âm

„x~z!…Âm„x~z!…2ŵ„x~z!…ŵ„x~z!…&

52
1

2p
@Wv~m!12Ws~m!#, ~4.12!

Wv~m!5W̃v~m!2Ws~m!. ~4.13!

The functionalWv(m) corresponds to the quantization of th
massive 2D vector field described by the classical ac
analogous to the 4D action~2.3!.

Similar relations can be obtained for spinor fields. One
Dirac spinor corresponds to two 2D Dirac spinors onS. One
easily finds that

E
S
ds^ĉ̄„x~z!…ĉ„x~z!…&5

m

p
Wd~m!, ~4.14!

whereWd(m) is the effective action of 2D spinors onS with
massm.

By using Eqs.~4.7!, ~4.12!, and~4.14! in expression~4.2!
for the Bekenstein-Hawking entropy in induced gravity w
find
12400
.

n

SBH5
1

6(i 51

N

@2Ws~ms,i !1Wd~md,i !

1Wv~mv,i !12Ws~mv,i !#. ~4.15!

This form of the entropy looks similar to the effective actio
of a two-dimensional quantum field model on the surfaceS.
To make this similarity more evident let us consider the co
crete induced gravity model with partially broken supersy
metry which was discussed in Sec. II. In this model t
masses of vector and spinor fields coincide,mv,i5md,i
5mi . As a result,Wv(m)5Ws(m)52 1

2 Wd(m) and Eq.
~4.15! takes the form

SBH52
1

12(i 51

N

@2Ws~ms,i !1Wd~mi !#[2
1

12
G~2!.

~4.16!

The quantityG (2) is the effective action of a 2D model whic
consists ofN spinor fields with massesmi and 2N scalar
fields with massesms,i .

In fact, we have 2D induced gravity onS. The condition
that the 4D curvature be small compared to the masses o
fields guarantees that the two-dimensional curvature ofS is
small as well. So the 2D effective actionG (2) can be com-
puted as an expansion in curvature. The leading term in
expansion is the cosmological constant term

G~2!@g#.E
S
Ag d2x l. ~4.17!

Herel is the ‘‘induced’’ 2D cosmological constant which i
expressed in terms of the induced 4D Newton constant~2.20!
as l523/G. The constraints which provide the ultraviole
finiteness of the 4D Newton constant@see Eqs.~2.17!# auto-
matically guarantee the finiteness of 2D cosmological c
stant.

The 2D model described by functionalG (2) can be ob-
tained from the supersymmetric model withN multiplets
consisting of a spinor and two scalar fields. The split of t
masses of spinor and scalar fields breaks the supersymm
and yields a nonvanishing 2D cosmological constant.

Of course, the suggested connection between 4D and
theories is not unique, and one may expect that in genera
coefficient on the RHS of Eq.~4.16! can be another rationa
number. Let us emphasize that the considered models o
duced gravity are phenomenological and admit a large a
trariness in the choice of masses of the constituent fie
One may hope that if the induced gravity is obtained from
underlying fundamental theory, the masses of the fields
be fixed by some principle which will determine the coef
cient in Eq.~4.16!.

A remark is also in order about the two-dimensional
terpretation of the Noether chargeQ. By taking into account
Eq. ~3.16! it is easy to show that, in the Rindler approxim
tion,

Q52(
i

Wv~mv,i !. ~4.18!
9-7
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This relation holds in any induced gravity model with vect
fields and does not require additional conditions on
masses of the constituent fields. It enables one to relateQ to
a quantum theory of 2D vector fields onS.

V. DISCUSSION

To summarize, we considered a class of induced gra
models where the low-energy gravitational field is genera
by quantum one-loop effects in a system of heavy const
ents. The vector models presented here consist of mas
scalar, spinor, and vector constituent fields, and do not
quire nonminimal couplings of the scalar constituents. W
demonstrated that the general mechanism of the entropy
eration in the induced gravity proposed in Ref.@10# does
work, and that the Bekenstein-Hawking entropy can be
rived by a statistical-mechanical counting of the ene
states of heavy constituents.

It was further demonstrated that the expression for
Bekenstein-Hawking entropy in the induced gravity can
identically rewritten in terms of fluctuations of the constit
ent fields at the event horizon. The latter are determined o
by zero-frequency~‘‘soft’’ ! solutions of the correspondin
field equations. These ‘‘soft’’ modes are uniquely defined
their asymptotics at the bifurcation sphere of horizonsS.
Using this property, it was explicitly demonstrated that t
fluctuations of the constituent fields at the horizon coinc
with the effective action of two-dimensional~flucton! fields
on S. This mechanism is somewhat similar to the idea of
holography @15–21#. We hope to discuss this relation i
more details somewhere else.

As a result of the two-dimensional reduction, th
Bekenstein-Hawking entropy appears to be equal touluA/12,
where l is the 2D cosmological constant induced on t
surface of the horizon by 2D flucton fields. This implies th
the degrees of freedom responsible for the black hole entr
in the induced gravity can be related to surface degree
freedom of the black hole horizon. Such a conclusion is s
ported by the observation that since the masses of the
stituents are very high~of the order of the Planckian mass!,
the fluctuations of the constituent fields near the horizon
be directly connected with the fluctuations of the 2D geo
etry of the horizon. This might bring a connection with th
well-known results of statistical computations of black ho
entropy of 3D black holes@4,5#.

It should be emphasized, once again, that the indu
gravity approach does not pretend to explain the black h
entropy from first principles of the fundamental theory
quantum gravity~such as the string theory! but it allows one
to demonstrate the universality of the entropy and its in
pendence of the concrete details of such a theory. It give
a hint that only a few quite general properties of the fun
mental theory~such as the low-energy gravity as induc
phenomenon, finiteness of the low-energy coupling c
stants, holography, and so on! are really required for a
statistical-mechanical explanation of the black hole entro
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APPENDIX: ENERGY, HAMILTONIAN, AND NOETHER
CHARGE FOR VECTOR FIELDS

Here we consider the relation between the energy and
Hamiltonian for the vector model and prove Eq.~3.18!. Let
us recall that the classical energyE of a field F in a 3D
regionB is defined by the stress-energy tensor

E5E
B
Tmnzmdsn, Tmn52

2

A2g

dI @F#

dgmn
, ~A1!

wheredsn is the future directed vector of the volume el
ment onB, zm is the timelike Killing vector, andI @F# is the
classical action ofF. The canonical energy is

H5E
B
S ]L~F!

]¹nF
LzF2znL~F! Ddsn, ~A2!

whereLz is the Lie derivative alongzm and L(F) is the
Lagrangian of the field„I @F#5*dVL(F)….

In the quantum theory we are dealing with quantum av
ages of the energy and the canonical energy. For the th
under consideration, Eq.~3.11!, one has

Ē5(
i 51

N

~Ēs,i1Ēd,i1 Ē̃v,i2Ēs,i8 !, ~A3!

H̄5(
i 51

N

~H̄s,i1H̄d,i1 H̃̄v,i2H̄s,i8 !. ~A4!

In these relations the averageC̄ of Ĉ is

C̄5e2 iG[g]E @DF#C@F,g#eiI [g,F] , ~A5!

and Ēi and H̄ i are the energy and the canonical energy
each of the fields which enter total action~3.12!. The quan-

tities Ē̃v,i , H̃̄v,i and Ēs,i8 , H̄s,i8 correspond to the fieldsAi
m

andw i , respectively. These fields appear under quantiza
of the vector constituentsVi

m . The minus sign byĒs,i8 and

H̄s,i8 is the result of the ‘‘wrong’’ statistics of the fieldsw i .6

It can be easily shown that the energy and the canon
energy coincide if the actionI does not contain the term
with curvature. The only fields which explicitly contain th
curvature term are vector fieldsAi

m . For this reason one ha

6This result can be obtained directly if one starts with the expr
sion for the energy and canonical energy for a vector fieldVm ,
rewrite them in the point-split form, and take into account that

^V̂m~x!V̂n~x8!&5^Âm~x!Ân~x8!&1m22¹m¹n8^ŵ~x!ŵ~x8!&.
9-8
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H̄2Ē5(
i 51

N

~ H̃̄v,i2 Ē̃v,i !. ~A6!

Let us discuss first the difference between the energyẼv and
the HamiltonianH̃v of a classical vector fieldAm described
by actionĨ v@A#; see Eq.~2.9!. Ẽv andH̃v are obtained from
Ĩ v@A# by formulas~A1! and ~A2!. The difference between
these quantities appears because of the variation over
metric of the curvature coupling term inĨ v@A#, and so one
has

H̃v2Ẽv52E
B
dsnzm¹r¹sS ]L̃v

]Rmsrn
1

]L̃v

]Rnsrm
D . ~A7!

In the Rindler approximation the integral can be transform
to the total divergence

H̃v2Ẽv52E
B
dsn¹r

3F ~2zm;s1zm¹s!S ]L̃v

]Rmsrn
1

]L̃v

]Rnsrm
D G .

~A8!
ev

,’’

s.

f
9

12400
the

d

When the regionB is the region of the black hole exterio
the black hole horizon is one of its boundaries. Then
integral on the RHS of Eq.~A8! is reduced to two terms: on
term comes from the spatial boundary ofB and the other one
from the bifurcation surfaceS. The terms on the spatia
boundary can be eliminated by the proper choice of bou
ary conditions. However, the term onS cannot be elimi-
nated. By taking into account thatzm50 andzm;s5k(tmns

2tsnm) on S one obtains, from Eq.~A8!,

H̃v2Ẽv54kE
S
tmnntlnr

]L̃v

]Rmnlr
ds. ~A9!

Derivation of the analogous relation for general diffeomo
phism invariant theories is given in@29#. By summing over
all the vector fieldsAi ,m which enter the model, using Eq
~A6!, and comparing this with Eqs.~3.13! and~3.14! we see
that, for the vector induced gravity model,

H2E5
k

2p
Q, ~A10!

whereQ is the Noether charge. To obtain from Eq.~A10! the
result in quantum theory one has to replace the quantitie
this formula by the corresponding quantum averages.
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